Orbit Equivalence, Coinduced Actions and Free Products

نویسنده

  • Lewis Bowen
چکیده

The following result is proven. Let G 1 T 1 (X 1 , µ 1) and G 2 T 2 (X 2 , µ 2) be orbit-equivalent, essentially free, probability measure preserving actions of countable groups G 1 and G 2. Let H be any countable group. For i = 1, 2, let Γ i = G i * H be the free product. Then the actions of Γ 1 and Γ 2 coinduced from T 1 and T 2 are orbit-equivalent. As an application, it is shown that if Γ is a free group, then all nontrivial Bernoulli shifts over Γ are orbit-equivalent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AN UNCOUNTABLE FAMILY OF NONORBIT EQUIVALENT ACTIONS OF Fn

Recall that two ergodic probability measure preserving (p.m.p.) actions σi for i = 1, 2 of two countable groups Γi on probability measure standard Borel spaces (Xi, μi) are orbit equivalent (OE) if they define partitions of the spaces into orbits that are isomorphic, more precisely, if there exists a measurable, almost everywhere defined isomorphism f : X1 → X2 such that f∗μ1 = μ2 and the Γ1-or...

متن کامل

C*-algebraic Characterization of Bounded Orbit Injection Equivalence for Minimal Free Cantor Systems

Bounded orbit injection equivalence is an equivalence relation defined on minimal free Cantor systems which is a candidate to generalize flip Kakutani equivalence to actions of the Abelian free groups on more than one generator. This paper characterizes bounded orbit injection equivalence in terms of a mild strengthening of Rieffel-Morita equivalence of the associated C*-crossed-product algebra...

متن کامل

Around the orbit equivalence theory of the free groups , cost and ` 2 Betti numbers ∗

Abstract: The goal of this series of lectures is to present an overview of the theory of orbit equivalence, with a particular focus on the probability measure preserving actions of the free groups. I will start by giving the basis of the theory of orbit equivalence and explain the theory of cost. In particular, prove such statements as the induction formula and the computation of the cost of fr...

متن کامل

Around the orbit equivalence theory of the free groups∗

Abstract: The goal of this series of lectures is to present an overview of the theory of orbit equivalence, with a particular focus on the probability measure preserving actions of the free groups. I will start by giving the basis of the theory of orbit equivalence and explain the theory of cost. In particular, prove such statements as the induction formula and the computation of the cost of fr...

متن کامل

Se p 20 06 Orbit equivalence for Cantor minimal Z 2 - systems

We show that every minimal, free action of the group Z2 on the Cantor set is orbit equivalent to an AF-relation. As a consequence, this extends the classification of minimal systems on the Cantor set up to orbit equivalence to include AF-relations, Z-actions and Z2-actions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009